Indian Statistical Institute Second Semester Examination 2003-2004

M.Math I Year Differential Geometry

Time: 3 hrs Date:03-05-04

Max. Marks: 50

Answer all six questions

Possibly Useful Formula:

$$2\langle \nabla_X Y, Z \rangle = X\langle Y, Z \rangle + Y\langle X, Z \rangle - Z\langle X, Y \rangle + \langle [X, Y], Z \rangle - \langle [X, Z], Y \rangle - \langle [Y, Z], X \rangle$$

- 1. Consider the two-dimensional Riemannian manifold (M, g) where $M = \{(x, y) \in \mathbb{R}^2 : y > 0\} \text{ and } g = \frac{1}{v^2} dx \otimes dx + \frac{1}{v^2} dy \otimes dy$
 - a) For any $a \in \mathbb{R}$, prove that the map $f_a : M \to M$ given by $f_a(x,y) = (x+a, y)$ is an isometry.
 - b) For any $a \in \mathbb{R}$, prove that the curve $\sigma_a : \mathbb{R} \to M$ given by $\sigma(t) = (a, e^t)$ is a geodesic.
 - c) Calculate the sectional curvature of (M, g) at any point (x_0, y_0) . [11]
- 2. Let M and N be n-manifolds with M compact and N connected. Let $f: M \to N$ be an immersion. Prove that f is onto (surjective). |6|
- 3. Let $\pi: (\tilde{M}, \tilde{S}) \to (M, g)$ be a Riemannian covering i.e., a smooth covering such that π is a local isometry. Assume that (M, g) and (M, \tilde{g}) are oriented. If the covering is a finite k-sheeted covering prove that

$$Vol(\tilde{M}, \tilde{g}) = k \ Vol(M, g),$$

where "Vol" denotes volume.

[8]

<u>Hint</u>: Recall the proof when π is actually an isometry.

- 4. Let M be a compact oriented n- manifold and N any n-manifold. Let Ω be any *n*-form on N and let $f, g: M \to N$ be two smooth maps. If f and g are smoothly, homotopic, (i.e. if there is a smooth map $F: M \times [0,1] \rightarrow N$ with F(x,0) = f(x) and F(x,1) = g(x) for all x). Then prove that $\int_M f^*(\Omega) = \int_M g^*(\Omega)$ [8]
- 5. Let (M,g) be a Riemannian manifold and let A be the image of a closed geodesic in M. Let p be a point in M which is not in A. Let $C:[0,L]\to M$ be a geodesic (parametrised by arc-lenth) such that $l(c) = \inf_{x \in A} d(p, x)$

- a) Let C_t be a variation of C and Y be the corresponding variation vector field. We know that $\inf_{-\epsilon < t < \epsilon} l(C_t) = l(C)$ for all variations with $C_t(L) \in A$ and $C_t(0) = p$. For variations of this type, what are the restrictions on Y(0) and Y(L)?
- b) The first variation formula for the length functional is

$$\frac{d}{dt}l(C_t)\Big|_{t=0} = \langle Y(s), C'(s)\rangle\Big|_0^L - \int_0^L \langle Y(s), \nabla_{C'(s)}C'(s)\rangle ds$$

Using the above formula, prove that $\langle C'(L), X \rangle = 0$ for any $X \in T_{c(L)}A$. Clearly state any result you use. [6]

6. Let $f:(M,g)\to \mathbb{R}$ be a smooth function on a Riemannian manifold. The Hessian of f at a point $p\in M$ is a 2-tensor denoted by D^2f_p and defined as follows: Let $X,Y\in T_pM$ and let \tilde{X},\tilde{Y} be vector fields extending X,Y. Then

$$D^{2}f_{p}(X,Y) := \tilde{X}_{p}(\tilde{Y}(f)) - (\nabla_{\tilde{X}}\tilde{Y})_{p}f$$

- a) Prove that D^2f is actually a tensor, i.e., $D^2f_p(X,Y)$ doesn't depend on the extensions \tilde{X} and \tilde{Y} .
- b) Prove that D^2f is a symmetric tensor.
- c) If p is a local minimum of f, prove that $D^2 f_p(X, X) \ge 0 \quad \forall X \in T_p M$. [11]

<u>Hint</u>: Consider a geodesic σ with $\sigma(0) = p$, $\sigma'(0) = X$.